
Brute-force Collision Search for (truncated) MD5
Andrew Isaacson

isaacson@cs.umn.edu

Abstract— A survey of the state of the art in distributed
collision search and results of an implementation of same applied
to truncated MD5.

I. I NTRODUCTION

The MD5 algorithm is “an extension of the MD4 message-
digest algorithm” that is “slightly slower than MD4, but is
more “conservative” in design.” [1]. It is a cryptographic hash
function with 128-bit output. The most significant publicly
known algorithmic weakness in MD5 is the collision in its
compression function [2].

The most significant design weakness in MD5 is the small
size of its output. [3] showed in 1996 that for a $10 million
budget a machine could be constructed to generate collisions
in MD5 (or, indeed, nearly any hash function with 128-bit
output) in an average 22 days. This is achieved by applying
the “birthday paradox” to the collision search, resulting in
a meet-in-the-middle (MITM) style of attack. Subsequent
cryptographic hash functions have been specifed with 160-,
192-, 256-, or indeed 512-bit output, to make a MITM hash
collision attack infeasible.

The modern cryptography community knows that MD5 is
too small for comfort, and counsels against its use [4]. Even
back in 1994, [5] suggested alternative hash functions with
larger output.

Nonetheless, MD5 continues to be the most popular crypto-
graphic hash function in the general programming community.
A significant number of SSL certificates are signed using RSA-
MD5 [6]. Apple’s new software distribution system uses MD5
exclusively [13]. In January 2004, LiveJournal.com fielded a
new password negotiation scheme [14]. Their software library
included both MD5 and SHA-1; this protocol was being
constructed anew out of whole cloth (there was no backwards
compatibility consideration). Nonetheless, the designer speci-
fied MD5 rather than SHA-1.

There are some bright points. The OpenBSD project [8]
provides three hashes (MD5, SHA-1, and RMD160) as finger-
prints to ensure integrity of files downloaded via their ‘ports’
system.

Experience with DES and RC5 indicates that programmers
and designers without extensive cryptographic experience will
continue to ignore hypothetical arguments showing insecurity,
until an actual break is demonstrated in practice. Ergo, an open
demonstration of a collision in MD5 will likely have a salutary
effect in moving forward the practicum of cryptography.

II. BACKGROUND

A. Internet-distributed computing

There have been several successful efforts coordinating
loosely-coupled groups of volunteers over the Internet to
attack trivially parallelizable cryptography problems. The DES
Challenge group, led by Rocke Verser, was one of the first.
In 1997, RSA Laboratories offered $10,000 cash to anyone
who could decrypt a message encrypted with a 56-bit DES
key. Five months later, DESCHALL (as Rocke’s group was
known) claimed the prize. Ongoing challenges led to DES
keys being broken in as little as 22 hours. [7], [9]

Since then, the Distributed.net team has attacked a variety of
problems with great success. Tens of thousands of volunteers
are currently donating cycles from hundreds of thousands of
computers in pursuit of a variety of problems, both crypto-
graphic and mathematical.

There are dozens of other distributed computing volunteer
projects, including SETI@Home [10], Folding@Home [11],
GIMPS [12], and a plethora of others.

B. collision techniques for hash functions

[3] describes a feasible technique to find collisions in a hash
function such as MD5. The strategy is to define a “random
walk” across the space of all MD5 hashes, with each iteration
representing a hash of one of the messages at hand. (This
is not really a random walk, because the iterator is a pure
function of the previous point. Perhaps “deterministic walk”
would be more accurate.) Eventually two ‘threads’ or ‘streams’
of iterated hashes will coincide, which can be detected by
keeping a database of points (or hashes) visited. The storage
required to hold these data can be mitigated by storing only
a small percentage of the points visited; viz, adistinguished
point, or hash with a prefix ofn bits all zero.n can be tuned to
the expected number of points to be computed; for full 128-bit
MD5, n = 32 is reasonable, while a truncated 48-bit MD5 is
well served byn = 16. We prefer to compute a large number
of streams of shorter length rather than fewer extremely long
streams, so that the percentage of initial collisions can be
maximized (as opposed to two streams which merge and
continue in parallel, resulting in a useless collision detected at
every DP).

III. D ESIGN

The code is structured as follows. There is adatabasewhich
stores (DP, stream, position) tuples. There is aserver which
collects tuples from multipleclients over a network. Finally,
there is an iterator which computes the hash values and
identifies distinguished points, which can be stored in a local

DB or fed through the client to a remote server and thence
to a centralized DB. For short runs (for example, finding a
64-bit collision) a single machine with a local DB suffices;
for longer runs (more than 72 bits) multiple client machines
are necessary to avoid overly long runtimes.

A. Database

The database stores (hash, streamID, position) tuples. When
mounting an attack on full 128-bit MD5, the database will be
required to store232 tuples, and must answer the question “do
any two tuples share the same hash?” The obvious solution is
to store the tuples sorted by hash value.

The database format proposed in [3] stores 12 bytes of hash,
4 bytes to name streams, and 6 bytes to store iteration count;
at 22 bytes per tuple, van Oorschot and Wiener calculate that
their database will require 30 GB of memory. (The calculations
are somewhat involved; consult the reference for details.) They
suppose to spend $2.25 million on RAM. (Remember, it was
1996 – they estimated $75 per megabyte. $300 per gigabyte
would be more accurate, as of mid-2004.) Instead, I chose
to store my database on disk, using streaming techniques to
mitigate the impact of slow random access times.

As tuples are received from the network, they are stored,
sequentially, to a file on disk. Once enough tuples have
been received to fill 75% of system RAM, the entirequeue
is mapped (mmap(2)) and sorted. The system then iterates
through the list of tuples, storing them to the appropriate
place in the actual database, which is streamed linearly through
system memory in reasonably-sized blocks.

Using random access, with a working set larger than avail-
able cache, a modern disk can sustain on the order of 100-
500 I/O operations per second (IOPS); a large and expensive
RAID system might attain 10,000 IOPS. Due to the write-
mostly nature of the tuple workload, and by deferring collision
detection until queue processing time, this database system
can sustain write rates of 18,000 tuples per second on a single
inexpensive ATA/100 drive.

B. Network protocol

Each client opens a TCP connection to the server; the client
and server then communicate using an SMTP-inspired ASCII
protocol. Under the current protocol, the client sends each
DP to the sever as an independent transaction; an obvious
optimization would be to batch them to minimize TCP and IP
overhead.

The server uses a polling event loop implemented with
select (2) and non-blocking IO to avoid the difficulties of
managing multi-process access to a single file.

C. The hash iterator function

First, we assume that there are two messages,m and m′;
the goal is to find perturbations ofm and m′ such that the
perturbed messages hash to the same value under MD5. A
hash value with its first 32 bits all zero is adistinguished
point (or more precisely, a 32-bit DP).

Let H : {0, 1}n → {0, 1}128 represent MD5, andh ∈
{0, 1}128 a particular instance of an MD5 hash. A perturbation

function fm(h) (respectively,fm′(h)) takes a 128-bit input
h and outputsmh semantically identical tom and uniquely
determined byh. We choose a binary predicatep(h) that is
easily computable, such as parity. A choice functione(h) is
defined

e(h) =
{

fm(h) if p(h) = 0
fm′(h) if p(h) = 1

Finally, we construct ahash iteration function
g : {0, 1}128 → {0, 1}128

g(h) = H(e(h))

The messagesm and m′ should be of the same length,
and the perturbation function should be length-preserving.
(While it is possible to implement the collision technique given
messages of differing lengths, this precludes some compelling
optimizations.) A simple example of a perturbation function
is an HTML document with a hidden string such as ; the A’s can be replaced by any
alphanumeric string without any visible or semantic change.
Another permutation applicable to source code and plaintext
files is trailing spaces between the last printable character and
the carriage return terminating the line. HTML also allows
arbitrary whitespace to be substituted for other whitespace.

The perturbation functions form andm′ do not need to be
related.

Clearly, given an unbiasedp(h) and H(), there will be
approximately equal numbers ofH(fm()) and H(fm′())
generated. In any particular collision, the probability isp = 0.5
that the collision is betweenm andm′. The birthday “paradox”
assures us that once we approach

√
|H| hashes generated, we

will quickly generate a large number of collisions; eventually,
a desired collision betweenH(fm()) and H(fm′()) will be
found.

As noted above, we prefer to have many streams of shorter
length rather than fewer, longer streams. Therefore, the iterator
restarts with a new stream after 100 DPs are found.

IV. I MPLEMENTATION

[15] contains an implementation of this design in about 1700
lines of C, written to the Unix API (libc + mmap + sockets)
with OpenSSL providing the cryptographic primitives.

V. PERFORMANCE

Using OpenSSL 0.9.7c on an “Athlon XP 2400+” running
at 2 GHz, with a message 178 bytes long, the iterator is
able to compute 1.1 million iterations per second. In this
implementation, speed is closely related to the length of the
message, due to OpenSSL’s implementation.

VI. RESULTS ON TRUNCATEDMD5

Running on the aforementioned Athlon XP for one hour
with HASHBIT=64, the code completed 4.06 billion iterations,
finding 61,874 distinguished points, at a rate of 1.11 million
iterations per second. It found one 64-bit collision: the mes-
sage

<html><head>

<title>Orders from your Captain</title>
</head><body>
String Jack Shaftoe up by his thumbs.

<i>Cap’n Hook</i>
</body></html>
<AhadDagACAbHGafaAAAAAAAAAAAAAAAA>

hashes to 1ec2052f43a150cbd90b02e85267e99e while the
message

<html><head>
<title>Orders from your Captain</title>
</head><body>
Pay Jack Shaftoe 100 pieces of eight.

<i>Cap’n Hook</i>
</body></html>
<GddGffbedAeaHCDFAAAAAAAAAAAAAAAA>

hashes to 1ec2052f43a150cb2e1b1bb64a77c63b. The
preceding DPs were p1=00001a90d2021a0c00000000
and p2=00005c5a40350f8a00000000, and preceding hash
values were z1=f071160d04e31c1b0000000000000000 and
z2=7cc7bb9307194ea60000000000000000. The collision
came 186,487 iterations after the closest DP.

VII. A PPLICATIONS TO FULLMD5

At 1 million iterations per second,264 iterations (expected
to find a collision in a 128-bit hash function) would require
584,000 CPU-years, or 20,000 CPUs for 29 years, or 100,000
CPUs for 5.8 years. At 11 million iterations per second,
the expected CPU time goes down to 53,000 CPU-years, or
100,000 CPUs for 6.3 months. This is somewhat larger than
most of the successful distibuted computing projects, but is
much smaller than the CPU-years consumed by the RC5-64
project of Distributed.net, thanks to Moore’s Law.

VIII. F UTURE WORK

This is a very active field and there are several fruitful areas
of ongoing work. Here are a few ideas that promise immediate
reward.

A. Avoid computing the full hash

The MD5 alorithm processes its input as a series of 512-
bit blocks, with the length of the input included in a final
“padding” block. The previous state,Si−1, is mixed with the
current block,Bi:

Si = f(Si−1, Bi)

If m andm′ are the same length and differ only in blockBi,
thenSi−1 = S′

i−1, and finding a collision in MD5 reduces to
finding a collision beweenfSi−1(Bi) andfSi−1(B

′
i).

To the best of my knowledge, none of the current crop of
software MD5 collision searchers implement this optimization.

B. Compute multiple streams using explicit paralellism

Explicit parallelism involves performing the same operation
on many data with a single instruction. Modern CPUs provide
a variety of implementations of this basic idea, including
MMX, SSE, SSE2, and AltiVec (even ignoring the much wider
parallelism available on vector machines such as the Cray X1).
Furthermore, even using plain 32-bit ALU operations it can
be fruitful to “turn the problem on its side” and compute
32 one-bit operations simultaneously. DESCHALL called this
approach “bit-slicing” and recognized significant speedups (on
the order of 4-10x) from it.

The md5crk.com group has an implementation using
SSE2, and reports that it performs about 10x better than a
plain C implementation on a Pentium 4 at 2.4 GHz.

C. Programmable Hardware

Key search can be very efficiently implemented in an ASIC;
as the EFF’s DES Cracker showed, this is feasible at a
suprisingly low price point (under $300,000). An even lower
price-point is available with modern FPGA hardware, which
frequently include a hard CPU and Ethernet transceiver on-
chip.

D. Programmable GPUs

Modern GPUs such as the ATI Radeon and NVidia NV40
have an extremely flexible programming interface, with a rich
set of operators designed to be applied to large vertex lists
and pixel arrays, and with extremely high parallelism. Some
researchers are already running LINPACK on such GPUs; it
seems likely that MD5 could be implemented efficiently as
well.

IX. CONCLUSION

Clearly, the $10 million budget envisioned in [3] has
fallen to Moore’s Law. Today, that 30GB of RAM which
cost $2.25 million could be had, with a Gigabit Ethernet
interconnect, for under $12,000.

Despite the likelihood that various governmental and com-
mercial organizations have constructed such a machine, no
acknowledgement of a true MD5 collision has yet been
published. Clearly the software and database capability exists;
the only remaining hurdle is the relative slowness of software
implementations.

REFERENCES

[1] RFC 1321,http://www.ietf.org/rfc/rfc1321.txt
[2] Cryptanalysis of MD5 Compress, H. Dobbertin, May 2, 1996
[3] Parallel Collision Search with Cryptanalytic Applications,

P. van Oorschot and M. Wiener, 1996
[4] Schneier and Ferguson,Practical Cryptography
[5] Schneier,Applied Cryptography
[6] http://www.md5crk.com/?sec=howinsecure
[7] Cracking DES: Secrets of Encryption Research, Wiretap Politics & Chip

Design, EFF
[8] http://www.openbsd.org/
[9] http://www.distributed.net/des/
[10] http://setiathome.ssl.berkeley.edu/
[11] http://www.stanford.edu/group/pandegroup/folding/
[12] http://www.mersenne.org/prime.htm
[13] http://www.vmeng.com/pipermail/mac crypto/2004-April/000645.html

[14] http://www.livejournal.com/community/lj dev/599743.html
[15] http://web.hexapodia.org/˜adi/md5dp/

